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Abstract

A significant improvement to the development of CFD-based unsteady aerodynamic

reduced-order models (ROMs) is presented. This improvement involves the simultaneous

excitation of the structural modes of the CFD-based unsteady aerodynamic system that en-

ables the computation of the unsteady aerodynamic state-space model using a single CFD

execution, independent of the number of structural modes. Four different types of inputs are

presented that can be used for the simultaneous excitation of the structural modes. Results

are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

Introduction

Early mathematical models of unsteady aerodynamic response capitalized on the effi-

ciency and power of superposition of scaled and time-shifted fundamental responses, also

known as convolution. Classical models of two-dimensional airfoils in incompressible flow1

include Wagner’s function2 (response to a unit step variation in angle of attack), Kussner’s

function3 (response to a sharp-edged gust), Theodorsen’s function4 (frequency response to

sinusoidal pitching motion), and Sear’s function5 (frequency response to a sinusoidal gust).

As geometric complexity increased from airfoils to wings to complete configurations, the an-

alytical derivation of these types of response functions became impractical and the numerical

computation of linear unsteady aerodynamic responses, in the frequency domain, became

the method of choice.6
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When geometry- and flow-dependent nonlinear aerodynamic effects became significant,

appropriate nonlinear aerodynamic equations were solved using time-integration techniques.

Coupling the nonlinear aerodynamic equations with a linear structural model provides a

direct simulation of aeroelastic phenomena. This direct simulation approach for solving

nonlinear aeroelastic problems has yielded a very powerful simulation capability with two

primary challenges. The first challenge is the associated computational cost of this simula-

tion, which increases with the fidelity of the nonlinear aerodynamic equations to be solved.

Computational cost may be reduced via the implementation of parallel processing tech-

niques, advanced algorithms, and improved computer hardware processing speeds. The

second, more serious, challenge is that the information generated by these simulations can-

not be used effectively within a preliminary design environment. Any attempt to incorporate

the output of these aeroelastic simulations within a design environment inevitably becomes

design by trial-and-error. As a result, the integration of traditional, computational aeroelas-

tic simulations into preliminary design activities involving disciplines such as aeroelasticity,

aeroservoelasticity (ASE), and optimization is, at present, a costly and impractical venture.

The goal behind the development of reduced-order models (ROMs) is aimed precisely at

addressing these two challenges. Development of a ROM entails the development of a simpli-

fied mathematical model that captures the dominant dynamics of the original system. This

alternative mathematical representation of the original system is, by design, in a mathemat-

ical form suitable for use in a multidisciplinary, preliminary design environment. As a result,

interconnection of the ROM with other disciplines is possible, thereby addressing the sec-

ond challenge. The simplicity of the ROM yields significant improvements in computational

efficiency as compared to the original system, thereby addressing the first challenge.

At present, the development of CFD-based ROMs is an area of active research at several

government, industry, and academic institutions.7–11 Development of ROMs based on the

Volterra theory is one of several ROM methods currently under development.12–16 Reduced-

order models based on the Volterra theory have been applied successfully to Euler and

Navier-Stokes models of nonlinear unsteady aerodynamic and aeroelastic systems. Volterra-

based ROMs are based on the creation of linearized and nonlinear unsteady aerodynamic

impulse responses that are then used in a convolution scheme to provide the linearized and

nonlinear responses of the system to arbitrary inputs. In this setting, the linearized and

nonlinear impulse responses may be considered to be the ROMs of the particular nonlinear

system under investigation. Alternatively, upon transformation of the linearized and nonlin-

ear impulse responses into state-space form, the state-space models generated may also be

considered ROMs.

Various inputs can be used in the time domain (CFD code) to generate generalized
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aerodynamic forces (GAFs) in the frequency domain in order to perform standard, frequency-

domain aeroelastic analyses. But if time-domain aeroservoelastic (ASE) analyses are desired,

the frequency-domain GAFs are transformed back into the time domain using traditional

rational function approximation (RFA) techniques. These techniques include, for example,

the well-known Rogers approximation17 and the Minimum State technique.18 The RFA tech-

niques transform frequency-domain GAFs into state-space (time domain) models amenable

for use with modern control theory and optimization. The process just described transforms

time-domain information (CFD results) into frequency-domain information only to have the

frequency-domain information transformed back into the time domain.

Gupta et al19 and Cowan et al20,21 applied a set of flight testing inputs to an unsteady

CFD code and used the information to create a linear autoregressive moving average (ARMA)

model that was transformed into state-space form. Although this technique is applied entirely

within the time domain, the shape of the inputs applied to the CFD code requires tailoring in

order to excite a specific frequency range, resulting in an iterative process. In a similar vein,

Rodrigues22 developed a state-space model for an airfoil in transonic flow using a transonic

small-disturbance algorithm.

In the present paper, a direct approach for efficiently generating linearized unsteady aero-

dynamic state-space models is presented. Although the present application of the method

deals with linearized responses based on linearized impulse responses (linearized Volterra

kernels), the method can be formally extended to address nonlinear aeroelastic phenomena

via the use of nonlinear impulse responses (nonlinear Volterra kernels).

Silva and Bartels8 introduced the development of linearized, unsteady aerodynamic state-

space models for prediction of flutter and aeroelastic response using the parallelized, aeroelas-

tic capability of the CFL3Dv6 code. The results presented provided an important validation

of the various phases of the ROM development process. The Eigensystem Realization Algo-

rithm (ERA),23 which transforms an impulse response (one form of ROM) into state-space

form (another form of ROM), was applied for the development of the aerodynamic state-space

models. The ERA is part of the SOCIT (System/Observer/Controller Identification Tool-

box). Flutter results for the AGARD 445.6 Aeroelastic Wing using the CFL3Dv6 code were

presented as well, including computational costs. Unsteady aerodynamic state-space mod-

els were generated and coupled with a structural model within a MATLAB/SIMULINK24

environment for rapid calculation of aeroelastic responses including the prediction of flut-

ter. Aeroelastic responses computed directly using the CFL3Dv6 code showed excellent

comparison with the aeroelastic responses computed using the CFD-based ROM.

Previously, the aerodynamic impulse responses that were used to generate the aerody-

namic state-space models were computed using CFL3Dv6.0 via the excitation of one mode
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at a time. For a four-mode system, these computations are not very expensive. However,

for more realistic cases where the number of modes can be an order of magnitude or more

larger, the one-mode-at-a-time method becomes impractical. Towards the solution of this

problem, Kim25 and Kim et al10 developed methods that enable the simultaneous excitation

of the structural modes, greatly reducing the cost of identifying the aerodynamic impulse

responses from the CFD code. Kim’s method consists of using staggered step inputs, one

per mode, and then applying several techniques for recovering the individual responses from

this type of simultaneous excitation leading to the creation of state-space models.

This paper introduces four different types of excitations that can be used to simultane-

ously excite the structural modes while enabling the recovery of the individual responses.

This will enable the computation of aerodynamic impulse responses for any number of

structural modes using a single CFD execution. Reduced-order models generated using the

one-mode-at-a-time method are compared to ROMs using the simultaneous excitation inputs.

Recent additional enhancements to the development of unsteady aerodynamic and aeroelas-

tic ROMs, which includes the use of ROMs for static aeroelastic responses at matched-point

atmospheric conditions, are presented in a separate paper.26

Description of CFD and System Identification Methods

The following subsections describe the parallelized, aeroelastic version of the CFL3Dv6.4

code, the phases of the original and improved ROM development processes, and a descrip-

tion of the four types of functions used for simultaneous excitation of the CFD unsteady

aerodynamic system.

CFL3Dv6.4 Code

The computer code used in this study is the CFL3Dv6 code, which solves the three-

dimensional, thin-layer, Reynolds averaged Navier-Stokes equations with an upwind finite

volume formulation.27–29 The code uses third-order upwind-biased spatial differencing for the

inviscid terms with flux limiting in the presence of shocks. Either flux-difference splitting or

flux-vector splitting is available. The flux-difference splitting method of Roe30 is employed

in the present computations to obtain fluxes at cell faces. There are two types of time

discretization available in the code. The first-order backward time differencing is used for

steady calculations while the second-order backward time differencing with subiterations

is used for static and dynamic aeroelastic calculations. Furthermore, grid sequencing for

steady state and multigrid and local pseudo-time stepping for time marching solutions are

employed.

One of the important features of the CFL3D code is its capability of solving multiple

zone grids with one-to-one connectivity. Spatial accuracy is maintained at zone boundaries,
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although subiterative updating of boundary information is required. Coarse-grained paral-

lelization using the Message Passing Interface (MPI) protocol can be utilized in multiblock

computations by solving one or more blocks per processor. When there are more blocks than

processors, optimal performance is achieved by allocating an equal number of blocks to each

processor. As a result, the time required for a CFD-based aeroelastic computation can be

dramatically reduced.

In this paper, multiblock MPI parallel aeroelastic computations, including flutter, for

a flexible, semi-span supersonic configuration are performed using 28 flowfield blocks. In

order to achieve an optimal division of grid points, it is necessary to place flow field block

boundaries near a moving solid surface (the wing). The multiblock boundary and interior

movement scheme allows the user to place block boundaries near surfaces as necessary for

optimal parallelization. Boundaries interior to the fluid domain near a surface respond to

the local surface motion. As the wing moves, block boundaries move to maintain integrity

of block interfaces and the airfoil surface.

Because the CFD and computational structural mechanics (CSM) meshes usually do not

match at the interface, CFD/CSM coupling requires a surface spline interpolation between

the two domains. The interpolation of CSM mode shapes to CFD surface grid points is

done as a preprocessing step. Modal deflections at all CFD surface grids are first generated.

Modal data at these points are then segmented based on the splitting of the flow field blocks.

Mode shape displacements located at CFD surface grid points of each segment are used in

the integration of the generalized modal forces and in the computation of the deflection of the

deformed surface. The final surface deformation at each time step is a linear superposition

of all the modal deflections.

System Identification Method

In structural dynamics, the realization of discrete-time state-space models that describe

the modal dynamics of a structure has been enabled by the development of algorithms such

as the Eigensystem Realization Algorithm (ERA)23 and the Observer Kalman Identifica-

tion (OKID)31 Algorithm. These algorithms perform state-space realizations by using the

Markov parameters (discrete-time impulse responses) of the systems of interest. These al-

gorithms have been combined into one package known as the System/Observer/Controller

Identification Toolbox (SOCIT)32 developed at NASA Langley Research Center.

There are several algorithms within the SOCIT that are used for the development of

unsteady aerodynamic discrete-time state-space models. The PULSE algorithm is used

to extract individual input/output impulse responses from simultaneous input/output re-

sponses. For a four-input/four-output system, simultaneous excitation of all four inputs33
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yields four output responses. The PULSE algorithm is used to extract the individual sixteen

(four times four) impulse responses that associate the response in one of the outputs due to

one of the inputs. Details of the PULSE algorithm are provided in the references. Once the

individual sixteen impulse responses are available, they are then processed via the Eigen-

system Realization Algorithm (ERA) in order to transform the sixteen individual impulse

responses into a four-input/four-output, discrete-time, state-space model. A brief summary

of the basis of this algorithm follows.

A finite dimensional, discrete-time, linear, time-invariant dynamical system has the state-

variable equations

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) + Du(k) (2)

where x is an n-dimensional state vector, u an m-dimensional control input, and y a p-

dimensional output or measurement vector with k being the discrete time index. The

transition matrix, A, characterizes the dynamics of the system. The goal of system real-

ization is to generate constant matrices (A, B, C) such that the output responses of a given

system due to a particular set of inputs is reproduced by the discrete-time state-space system

described above.

For the system of Eqs. (1) and (2), the time-domain values of the systems discrete-time

impulse response are also known as the Markov parameters and are defined as

Y (k) = CAk−1B (3)

with B an (n x m) matrix and C a (p x n) matrix. The ERA algorithm begins by defining

the generalized Hankel matrix consisting of the discrete-time impulse responses for all in-

put/output combinations. The algorithm then uses the singular value decomposition (SVD)

to compute the A, B, and C matrices.

In this fashion, the ERA is applied to unsteady aerodynamic impulse responses to con-

struct unsteady aerodynamic state-space models.

Original ROM Development Processes

A CFD-based aeroelastic system can be viewed as the coupling of a nonlinear unsteady

aerodynamic system (flow solver) with a structural system as depicted in Figure 1. The

present study focuses on the development of a linearized unsteady aerodynamic ROM (in

state-space form), using the general procedure depicted in Figure 2, that is then coupled

to a structural model (also in state-space form) for aeroelastic analyses. For the discussions

that follow, the term ROM will refer to the unsteady aerodynamic state-space model. When
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the unsteady aerodynamic state-space model (ROM) is connected to a state-space model of

the structure within the SIMULINK environment, this system is often also referred to as a

ROM. However, to avoid confusion, the SIMULINK aeroelastic system will be referred to as

the aeroelastic simulation ROM.

An outline of the original (one-mode-at-a-time) ROM development process8 is presented

as background for the new enhancements. The original ROM development process is as

follows:

1. Implementation of impulse/step response technique into aeroelastic CFD code;

2. Computation of impulse/step responses for each mode, one mode at a time, of an

aeroelastic system using the aeroelastic CFD code; these responses are computed about a

static aeroelastic solution (or a given dynamic pressure);

3. Impulse responses generated in Step 2 are transformed into an unsteady aerodynamic

state-space system using the ERA (within SOCIT);

4. Evaluation/validation of the state-space models generated in Step 3 via comparison

with CFD results (i.e., ROM results vs. full CFD solution results);

In the original ROM process, since each mode is being excited individually, the response

in each output due to a particular input (e.g., the impulse response in output 2 due to input

1) is generated almost directly. If the function being used to excite the system is an impulse

(or a unit pulse for discrete-time systems), then the output from the CFD solution will consist

of the impulse response of each output due to that one input. If the function being used to

excite the system is not an impulse function (such as a step input or a random input), then

the impulse response needs to be extracted from the input/output data. One method for

extraction is deconvolution8 but there are other methods that can be used. For the original

ROM process, since each input to a system is being excited individually, the exact nature of

the input function is defined, to a certain extent, based on user preference (frequency range

of interest, ease of implementation into a CFD solver, etc.). The step input has emerged as

a convenient input for the original ROM process due to its ease of implementation into a

CFD solver and to the wide range of frequency excitation that it can generate.

The primary issue,then, with the original ROM process was the identification of the

unsteady aerodynamic impulse responses one mode at a time (Step 2). Clearly, for a large

number of modes, this procedure becomes impractical.

Improved ROM Development Processes

An outline of the improved simultaneous modal excitation ROM development process

with the recent enhancements is as follows:

1. Generate the number of functions (from a selected family) that corresponds to the
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number of structural modeshapes;

2. Apply the generated input functions simultaneously via one CFD execution; these

responses are computed directly from the restart of a steady rigid CFL3D solution (not

about a particular dynamic pressure);

3. Using the simultaneous input/output responses, identify the individual impulse re-

sponses using the PULSE algorithm (within SOCIT);

4. Transform the individual impulse responses generated in Step 3 into an unsteady

aerodynamic state-space system using the ERA(within SOCIT);

5. Evaluate/validate the state-space models generated in Step 4 via comparison with

CFD results (i.e., ROM results vs. full CFD solution results);

An important difference between the original ROM process and the improved ROM

process is stated in steps (2) of the outlines above. For the original ROM process, if a static

aeroelastic condition existed, then a ROM was generated about a selected static aeroelastic

condition. So a static aeroelastic condition of interest was defined (typically a dynamic

pressure) and that static aeroelastic condition was computed using CFL3D as a restart from

a converged steady, rigid solution. Once a converged static aeroelastic solution was obtained,

the ROM process was applied about that condition. This implies that the resultant ROM

is, of course, limited in some sense to the neighborhood of that static aeroelastic condition.

Moving ”too far away” from that condition could result in loss of accuracy.

The reason for generating ROMs in this fashion was because no method had been defined

to enable the computation of a static aeroelastic solution using a ROM. Any ROMs generated

in this fashion were, therefore, limited to the prediction of dynamic responses about a static

aeroelastic solution including the methods by Raveh11 and by Kim et al.10 The improved

ROM method, however, includes a method for generating a ROM directly from a steady,

rigid solution. As a result, these improved ROMs can then be used to predict both static

aeroelastic and dynamic solutions for any dynamic pressure. In order to capture a specific

range of aeroelastic effects (previously obtained by selecting a particular dynamic pressure),

the improved ROM method relies on the excitation amplitude to excite aeroelastic effects of

interest. The details of the method for using a ROM for computing both static aeroelastic and

dynamic solutions is presented in another reference by the present author.26 For the present

results, all responses were computed from the restart of a steady, rigid CFL3D solution,

bypassing the need (and additional computational expense) to execute a static aeroelastic

solution using CFL3D.
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Simultaneous Excitation Input Functions

In the situation where the goal is the simultaneous excitation of a multiple-input multiple-

output (MIMO) system, system identification techniques34–36 dictate that the nature of the

input functions used to excite the system must be properly defined if accurate input/output

models of the system are to be generated. The most important point to keep in mind when

defining these input functions is that these functions need to be different, in some sense, from

each other. This makes sense since, if the excitation inputs are identical and they are applied

simultaneously, it becomes practically impossible for any system identification algorithm to

relate the effects of one input on a given output. This, in turn, makes it practically impossible

for that algorithm to extract the individual impulse responses for each input/output pair.

As has already been well established, the individual impulse responses for each input/output

pair are necessary ingredients towards the development of state-space models. With respect

to unsteady aerodynamic MIMO systems, these individual impulse responses correspond

to time-domain generalized aerodynamic forces (GAFs), critical to understanding unsteady

aerodynamic behavior. The Fourier-transformed version of these GAFs are the frequency-

domain GAFs which provide an important link to more traditional frequency-domain-based

aeroelastic analyses.

The question is how different should these input functions be and how can we quantify

a level of ”difference” between each input function? Kim10 uses the familiar step function

as the input function but with each step input being applied at a different point in time

(lagged) in order to maintain some difference between the input signals. Kim refers to this

family of lagged step functions as ”almost orthogonal”. As Kim points out, the greater the

lag between successive step inputs, the greater the difference between input signals. This

then presents a spectrum of possibilities where, at one end, one has step input functions

with no lags (identical functions, not orthogonal) and at the other end the step functions

are separated by an extremely large lag (in the limit, these are the individual step inputs

from the original ROM process). Since orthogonality (linear independence) is the most

precise mathematical method for guaranteeing the ”difference” between signals, the present

research focuses on the application of families of orthogonal functions as candidate input

functions. Using orthogonal functions directly provides a mathematical guarantee that the

input functions are as different as mathematically possible. These orthogonal input functions

then can be considered optimal input functions for the identification of a MIMO system.

The four families of functions to be applied towards the efficient identification of a CFD-

based unsteady aerodynamic state-space model are: lagged step, block pulse, Haar, and

Walsh. Although it has been stated by Kim that the lagged-step functions are not completely

orthogonal (almost orthogonal), these functions are used in the present study for comparison
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purposes. The other three functions each represent an orthogonal family of functions. The

block pulse functions, presented in Figure 3, are orthogonal and resemble a modified step

input. An advantage of step-like functions is the broad frequency bandwidth that is excited

by the impulsive nature of these functions. An added benefit of the block pulse functions

over traditional step functions is that block pulse inputs provide excitation to the system in

both positive and negative directions. From an unsteady aerodynamics point of view, it is

important that modes of realistic wing configurations (e.g., with a non-symmetric airfoil) be

excited in both directions for a more complete capture of relevant dynamics.

The Haar functions, presented in Figure 4, comprise one of the simplest form of wavelet

functions. These functions are orthogonal by the mathematical definition of wavelet func-

tions. Likewise, this family of functions has a similarity to step inputs and therefore embodies

the impulsive (i.e., beneficial) nature of step inputs with regards to frequency bandwidth.

The final set of orthogonal functions is the Walsh function, presented in Figure 5.

It is important to mention that the Haar functions are generated using formulas based

on a power of two algorithm. These functions have yielded excellent results when applied

towards the identification of a CFD-based unsteady aerodynamic state-space model using a

single CFL3D execution for a multi-mode configuration. However, due to the fact that these

functions are generated based on a power of two algorithm, the number of modes drives

the size and, subsequently, the record length of the input functions that are then input to

CFL3D. As a result, this can severely limit the number of modes that can be excited at one

time. For example, if ten modes are to be excited simultaneously, then the record length of

the ten Haar functions generated (one per mode) is defined by the record length of the Haar

function that corresponds to mode ten. Then taking two to the power of ten yields 1024

time steps. Twelve modes yields a record length for the Haar functions of 4096 time steps,

thirteen modes yields 8192 time steps, fourteen modes yields 16384 time steps, and so on.

Clearly, for a very large number of modes, this family of functions is not practical. Therefore,

only those results for the lagged step (not orthogonal), the block pulse (orthogonal), and the

Walsh (orthogonal) functions are presented.

Supersonic Semi-Span CFD Model

The configuration used for the present analyses is a supersonic semi-span wind-tunnel

model known as the Rigid Semi-span Model (RSM). This configuration has been tested

several times at the NASA Langley’s Transonic Dynamics Tunnel (TDT). The actual wind-

tunnel model was fabricated using graphite and is very rigid. However, as part of collabora-

tive studies between the NASA Langley Research Center and the Boeing Company (Seattle),

a ”softened” computational model of the RSM was developed by Dr. Moeljo Hong (Boe-
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ing).37 The model was ”softened” by simply reducing the four modal frequencies by a factor

of four.

The results presented are for Euler (inviscid)solutions at a Mach number of 0.7 and

an angle of attack of 3 degrees. This configuration does not have a symmetric airfoil and

will, therefore, generate a static aeroelastic response in addition to the dynamic aeroelas-

tic response. The method for using an unsteady aerodynamic state-space ROM for static

aeroelastic responses is not presented in this paper but is presented in another paper by this

author.26 Figure 6 presents the surface grid for the CFL3D RSM configuration.

Results

As previously stated, when using the lagged-step functions as excitation inputs, it is

important to consider the lag (number of time steps) between each successive step input. It

is the time lag between each step input that determines the quality of the resultant model

that is identified. A time lag of fifteen (15) time steps was used initially in order to explore

the effect of the time lag on the resultant ROM. Presented in Figure 7 is the CFL3D response

in the first generalized coordinate due to the excitation of the four lagged-step inputs. The

effect of each of the lagged steps is evident in the response of the generalized coordinate as

evidenced by the four pulses in the response.

Presented in Figure 8 is the CFL3D response in the first generalized coordinate due to

the excitation of four lagged-step inputs but this time with a relative time lag of 50 time

steps. The effect of each of the lagged steps is evident in the response of the generalized

coordinate as evidenced by the four pulses in the response.

Figure 9 presents the four block pulse functions input to the CFL3D RSM model for

simultaneous excitation of the four modes.

Presented in Figure 10 is the CFL3D response in the first generalized coordinate due

to the excitation of the block pulse inputs. The effect of each of the block pulse inputs is

evident in the response of the generalized coordinate as evidenced by the four pulses in the

response. Note that the block pulse functions were defined over an interval of 2000 time

steps. The lagged step inputs were defined depending on the desired lag between each step

input but all solutions (lagged step, block pulse, and Walsh) were executed for the same

number of time steps.

In Figure 11, Figure 12, Figure 13, and Figure 14 each of the four Walsh functions is

presented separately for clarity. The CFL3D response in the first generalized coordinate due

to the Walsh function inputs is presented in Figure 15. Like the block pulse functions, the

Walsh functions were generated over a record length of 2000 time steps.

Processing the outputs for all four generalized coordinates for each input function through
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the PULSE algorithm in SOCIT, the time-domain generalized aerodynamic forces (GAFs)

can be identified. The first twenty-five time steps of the time-domain GAF in mode 1 due

to an input in mode 1 (GAF 1,1) for the four input functions (lagged step (15 steps), lagged

step (50 steps), block pulse, and Walsh) is presented as Figure 16. Clearly, if the focus is on

the initial portion of the GAF (high frequency), then all four input functions yield identical

GAFs. The results for the other GAFs (fifteen additional GAFs) is similar to the one shown

in Figure 16.

However, an analysis of the time-domain GAF 1,1 from the 20th to the 200th time step,

presented in Figure 17, reveals noticeable differences due to the four input functions. Note

that the vertical scale has been greatly expanded from that of Figure 16. This variance

can be considered an indication of the difficulty that the system identification algorithm is

encountering in attempting to identify the system. It can be seen that the greatest variance is

for the lagged step input with 15 time step delays, compared to the others. It is interesting

to note the similarity between the lagged step (50 time steps) and the block pulse input

functions.

Additional comparison of these results can be obtained via the analysis of the frequency-

domain version of the GAFs. The frequency-domain GAFs from each of four input functions

are compared to the frequency-domain GAFs from the use of serial (one-at-a-time) step

inputs. Comparison of the simultaneous input responses with those from the one-mode-at-a-

time does not imply that the one-mode-at-a-time results are the correct results. That is, it is

quite possible that (and most probable) that the responses obtained from the simultaneous

excitation will be different from the responses obtained from the one-mode-at-a-time excita-

tions due to potential nonlinear modal coupling effects. The reason for comparing these two

sets of responses is simply due to the fact that the one-mode-at-a-time responses represent

the original ROM approach. Application of an FFT to each one of the time-domain GAFs

directly yields the desired frequency-domain GAFs.8 Only a subset of the sixteen GAFs will

be presented in the figures below. The first comparison is for the real component of GAF

1,1, due to the lagged step input with 15 time-step delays, presented in Figure 18. The effect

of the variance exhibited in the time domain is manifested as a difference at low reduced

frequencies.

The imaginary component of GAF 1,1 due to the lagged step with 15 time-step delays

is presented in Figure 19. The comparison for the imaginary component is quite good, with

slight variations at certain frequency ranges.

The real and imaginary components of GAF 1,1 due to the lagged step with 50 time-step

delays are presented in Figure 20 and Figure 21. Here again, some variations from the serial

inputs are noticed as well, in particular with respect to the steady (zero reduced frequency)
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value.

The real and imaginary components of GAF 1,1 due to the block pulse function inputs

are presented as Figure 22 and Figure 23. For both the real and imaginary components, no-

ticeable improvement in the comparison is achieved with the use of the block pulse function.

The real and imaginary components of GAF 1,1 due to the Walsh function inputs are

presented as Figure 24 and Figure 25. For both the real and imaginary components, once

again, noticeable improvement in the comparison is achieved with the use of the Walsh

function. In particular, for both the block pulse and the Walsh functions, the steady value

(value at zero reduced frequency) is well captured.

A comparison of the frequency-domain GAF 2,2 is presented for the lagged step (50

time-step delays) and the Walsh function inputs. Figure 26 and Figure 27 contain the

comparison of the real and imaginary components of GAF 2,2 for the lagged step (50 time-

step delays) and the serial (step) inputs. Some differences are noticed, in particular in the

low reduced frequency range for both the real and imaginary components.

Figure 28 and Figure 29 are the comparison of the real and imaginary components of

GAF 2,2 for the Walsh and the serial (step) inputs. An improvement in the comparison is

once again noted.

The time-domain GAFs are then processed through the ERA (part of SOCIT) in order

to generate a state-space model of the unsteady aerodynamic system. The resultant state-

space models (for the lagged step with 50 time-step delays and the Walsh functions) were

12th order in dimension. To demonstrate the effectiveness of the new input functions, a

representative result is presented as Figure 30, a comparison of responses in the four gen-

eralized coordinates for the CFL3D solution and the ROM solution. The CFL3D responses

are from a CFL3D solution that includes both static and dynamic aeroelastic responses si-

multaneously. Typically, static and dynamic aeroelastic responses are computed separately

in order to reduce computational cost. A static aeroelatic solution is computed as the restart

solution from a steady, rigid solution using an artifically high structural damping value in

order to accelerate convergence to a static aeroelastic solution. Then, a dynamic aeroelastic

solution is computed as the restart solution from the converged static aeroelastic solution.

In the paper by the present author,26 a method is introduced that enables the prediction

of static and dynamic aeroelastic solutions from the same ROM. For the present paper, the

sample results presented in Figure 30 are for a full solution; that is, a solution that includes

both static and dynamic responses for a given dynamic pressure. In this case, the results

presented are for a dynamic pressure of 0.1 psi. Notice that the solutions start at a general-

ized coordinate value of zero (static, rigid solution) and converge to a non-zero mean value

(static aeroelastic solution) with the dynamic solution superimposed on the static solution.
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As can be seen, the comparison is very good and the ROM captures the combined static and

dynamic aeroelastic responses predicted by the CFL3D solution.

Concluding Remarks

An improved method for generating unsteady aerodynamic state-space reduced-order

models (ROMs) was introduced that enables the simultaneous excitation of an unsteady

aerodynamic CFD model, consisting of any number of modes, with a single CFD execution.

This is achieved by the introduction of orthogonal functions as the input excitations to

the system. Comparisons of generalized aerodynamic forces (GAFs) were presented for the

lagged step input, block pulse input, and the Walsh function input. Results compared well

with the results from the one-mode-at-a-time method that, for four modes, required four

separate CFD executions. Additional research is underway to continue the evaluation of

these functions on more complex configurations with a larger number of modes in order to

define the optimal input (and input amplitudes) for the simultaneous excitation of unsteady

aerodynamic systems. In addition, research will be performed in the system identification

arena in order to minimize the error associated with the identified state-space models.
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Figure 1: Coupling of structure and aerodynamics within an aeroelastic CFD code.
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Figure 2: Identification of generalized aerodynamic forces (GAFs).
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Figure 3: Block pulse functions.
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Figure 4: Haar (wavelet) functions.
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Figure 5: Walsh functions.
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Figure 6: Computational grid of supersonic semi-span configuration.
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Figure 7: CFL3D response in the first generalized coordinate due to excitation using
four lagged-step inputs with a lag of 15 time steps between each input.
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Figure 8: CFL3D response in the first generalized coordinate due to excitation using
four lagged-step inputs with a lag of 50 time steps between each input.
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Figure 9: Block pulse functions input to the CFL3D RSM model for modal excita-
tion.
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Figure 10: CFL3D response in the first generalized coordinate due to excitation
using block pulse functions.
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Figure 11: Walsh input function for the first mode (shown separately).
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Figure 12: Walsh input function for the first and second modes.
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Figure 13: Walsh input function for the first, second, and third modes.
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Figure 14: Walsh input function for the first, second, third, and fourth modes.
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Figure 15: CFL3D response in the first generalized coordinate due to excitation
using Walsh functions.
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Figure 16: Initial portion of the time-domain GAF in mode 1 due to an input in
mode 1 (GAF 1,1).
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Figure 17: Variation of GAF 1,1 for the four input functions from the 20th to the
200th time step.
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Figure 18: Real component of GAF 1,1 for the lagged step (15 time steps) and serial
step inputs.
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Figure 19: Imaginary component of GAF 1,1 for the lagged step (15 time steps)
and serial step inputs.
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Figure 20: Real component of GAF 1,1 for the lagged step (50 time steps) and serial
step inputs.
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Figure 21: Imaginary component of GAF 1,1 for the lagged step (50 time steps)
and serial step inputs.
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Figure 22: Real component of GAF 1,1 for the block pulse and serial step inputs.
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Figure 23: Imaginary component of GAF 1,1 for the block pulse and serial step
inputs.
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Figure 24: Real component of GAF 1,1 for the Walsh and serial step inputs.
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Figure 25: Imaginary component of GAF 1,1 for the Walsh and serial step inputs.
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Figure 26: Real component of GAF 2,2 for the lagged step (50 time-step delays)
and serial step inputs.
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Figure 27: Imaginary component of GAF 2,2 for the lagged step (50 time-step
delays) and serial step inputs.
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Figure 28: Real component of GAF 2,2 for the Walsh and serial step inputs.

Silva 46 of 48



0 0.5 1 1.5 2
−2500

−2000

−1500

−1000

−500

0

Time Steps

Im
ag

in
ar

y 
C

om
po

ne
nt

 o
f G

A
F 

2,
2

Serial (Step) Inputs
Simultaneous (Walsh) Inputs

Figure 29: Imaginary component of GAF 2,2 for the Walsh and serial step inputs.
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Figure 30: Full solution (static plus dynamic aeroelastic responses) generalized co-
ordinate responses at a dynamic pressure of 0.1 psi.
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